博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
转:Scrapy(爬虫框架)入门教程
阅读量:6819 次
发布时间:2019-06-26

本文共 8779 字,大约阅读时间需要 29 分钟。

在本篇教程中,我们假定您已经安装好Scrapy。 如若不然,请参考  。

接下来以  为例来讲述爬取。

本篇教程中将带您完成下列任务:

  1. 创建一个Scrapy项目
  2. 定义提取的Item
  3. 编写爬取网站的  并提取 
  4. 编写  来存储提取到的Item(即数据)

Scrapy由  编写。如果您刚接触并且好奇这门语言的特性以及Scrapy的详情, 对于已经熟悉其他语言并且想快速学习Python的编程老手, 我们推荐  , 对于想从Python开始学习的编程新手,  将是您的选择。

创建项目

在开始爬取之前,您必须创建一个新的Scrapy项目。 进入您打算存储代码的目录中,运行下列命令:

scrapy startproject tutorial

该命令将会创建包含下列内容的 tutorial 目录:

tutorial/    scrapy.cfg    tutorial/        __init__.py        items.py        pipelines.py        settings.py        spiders/            __init__.py            ...

这些文件分别是:

  • scrapy.cfg: 项目的配置文件
  • tutorial/: 该项目的python模块。之后您将在此加入代码。
  • tutorial/items.py: 项目中的item文件.
  • tutorial/pipelines.py: 项目中的pipelines文件.
  • tutorial/settings.py: 项目的设置文件.
  • tutorial/spiders/: 放置spider代码的目录.

定义Item

Item 是保存爬取到的数据的容器;其使用方法和python字典类似, 并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。

类似在ORM中做的一样,您可以通过创建一个  类, 并且定义类型为  的类属性来定义一个Item。 (如果不了解ORM, 不用担心,您会发现这个步骤非常简单)

首先根据需要从dmoz.org获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑 tutorial 目录中的 items.py 文件:

import scrapyclass DmozItem(scrapy.Item): title = scrapy.Field() link = scrapy.Field() desc = scrapy.Field()

一开始这看起来可能有点复杂,但是通过定义item, 您可以很方便的使用Scrapy的其他方法。而这些方法需要知道您的item的定义。

编写第一个爬虫(Spider)

Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。

其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 的方法。

为了创建一个Spider,您必须继承  类, 且定义以下三个属性:

  • : 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
  • : 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
  •  是spider的一个方法。 被调用时,每个初始URL完成下载后生成的  对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的  对象。

以下为我们的第一个Spider代码,保存在 tutorial/spiders 目录下的 dmoz_spider.py 文件中:

import scrapyclass DmozSpider(scrapy.spiders.Spider): name = "dmoz" allowed_domains = ["dmoz.org"] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/" ] def parse(self, response): filename = response.url.split("/")[-2] with open(filename, 'wb') as f: f.write(response.body)

爬取

进入项目的根目录,执行下列命令启动spider:

scrapy crawl dmoz

crawl dmoz 启动用于爬取 dmoz.org 的spider,您将得到类似的输出:

2014-01-23 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)2014-01-23 18:13:07-0400 [scrapy] INFO: Optional features available: ...2014-01-23 18:13:07-0400 [scrapy] INFO: Overridden settings: {}2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...2014-01-23 18:13:07-0400 [dmoz] INFO: Spider opened2014-01-23 18:13:08-0400 [dmoz] DEBUG: Crawled (200) 
(referer: None)2014-01-23 18:13:09-0400 [dmoz] DEBUG: Crawled (200)
(referer: None)2014-01-23 18:13:09-0400 [dmoz] INFO: Closing spider (finished)

查看包含 [dmoz] 的输出,可以看到输出的log中包含定义在 start_urls 的初始URL,并且与spider中是一一对应的。在log中可以看到其没有指向其他页面( (referer:None) )。

除此之外,更有趣的事情发生了。就像我们 parse 方法指定的那样,有两个包含url所对应的内容的文件被创建了: Book , Resources 。

刚才发生了什么?

Scrapy为Spider的 start_urls 属性中的每个URL创建了  对象,并将 parse 方法作为回调函数(callback)赋值给了Request。

Request对象经过调度,执行生成  对象并送回给spider  方法。

提取Item

Selectors选择器简介

从网页中提取数据有很多方法。Scrapy使用了一种基于  和  表达式机制: 。 关于selector和其他提取机制的信息请参考  。

这里给出XPath表达式的例子及对应的含义:

  • /html/head/title: 选择HTML文档中 <head> 标签内的 <title> 元素
  • /html/head/title/text(): 选择上面提到的 <title> 元素的文字
  • //td: 选择所有的 <td> 元素
  • //div[@class="mine"]: 选择所有具有 class="mine" 属性的 div 元素

上边仅仅是几个简单的XPath例子,XPath实际上要比这远远强大的多。 如果您想了解的更多,我们推荐  。

为了配合XPath,Scrapy除了提供了  之外,还提供了方法来避免每次从response中提取数据时生成selector的麻烦。

Selector有四个基本的方法(点击相应的方法可以看到详细的API文档):

  • : 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表 。
  • : 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表.
  • : 序列化该节点为unicode字符串并返回list。
  • : 根据传入的正则表达式对数据进行提取,返回unicode字符串list列表。

在Shell中尝试Selector选择器

为了介绍Selector的使用方法,接下来我们将要使用内置的  。Scrapy Shell需要您预装好IPython(一个扩展的Python终端)。

您需要进入项目的根目录,执行下列命令来启动shell:

scrapy shell "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/"

注解

当您在终端运行Scrapy时,请一定记得给url地址加上引号,否则包含参数的url(例如 & 字符)会导致Scrapy运行失败。

shell的输出类似:

[ ... Scrapy log here ... ]2015-01-07 22:01:53+0800 [domz] DEBUG: Crawled (200) 
(referer: None)[s] Available Scrapy objects:[s] crawler
[s] item {}[s] request
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>[s] sel
\r\n\r\n
[s] settings
>[s] spider
[s] Useful shortcuts:[s] shelp() Shell help (print this help)[s] fetch(req_or_url) Fetch request (or URL) and update local objects[s] view(response) View response in a browser>>>

当shell载入后,您将得到一个包含response数据的本地 response 变量。输入 response.body 将输出response的包体, 输出 response.headers 可以看到response的包头。

更为重要的是,当输入 response.selector 时, 您将获取到一个可以用于查询返回数据的selector(选择器), 以及映射到 response.selector.xpath() 、 response.selector.css() 的 快捷方法(shortcut):response.xpath() 和 response.css() 。

同时,shell根据response提前初始化了变量 sel 。该selector根据response的类型自动选择最合适的分析规则(XML vs HTML)。

让我们来试试:

In [1]: sel.xpath('//title')Out[1]: [
Open Directory - Computers: Progr'>]In [2]: sel.xpath('//title').extract()Out[2]: [u'
Open Directory - Computers: Programming: Languages: Python: Books']In [3]: sel.xpath('//title/text()')Out[3]: [
]In [4]: sel.xpath('//title/text()').extract()Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']In [5]: sel.xpath('//title/text()').re('(\w+):')Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

提取数据

现在,我们来尝试从这些页面中提取些有用的数据。

您可以在终端中输入 response.body 来观察HTML源码并确定合适的XPath表达式。不过,这任务非常无聊且不易。您可以考虑使用Firefox的Firebug扩展来使得工作更为轻松。详情请参考  和  。

在查看了网页的源码后,您会发现网站的信息是被包含在 第二个 <ul> 元素中。

我们可以通过这段代码选择该页面中网站列表里所有 <li> 元素:

sel.xpath('//ul/li')

网站的描述:

sel.xpath('//ul/li/text()').extract()

网站的标题:

sel.xpath('//ul/li/a/text()').extract()

以及网站的链接:

sel.xpath('//ul/li/a/@href').extract()

之前提到过,每个 .xpath() 调用返回selector组成的list,因此我们可以拼接更多的 .xpath() 来进一步获取某个节点。我们将在下边使用这样的特性:

for sel in response.xpath('//ul/li'): title = sel.xpath('a/text()').extract() link = sel.xpath('a/@href').extract() desc = sel.xpath('text()').extract() print title, link, desc

注解

关于嵌套selctor的更多详细信息,请参考  以及  文档中的 部分。

在我们的spider中加入这段代码:

import scrapyclass DmozSpider(scrapy.Spider): name = "dmoz" allowed_domains = ["dmoz.org"] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/" ] def parse(self, response): for sel in response.xpath('//ul/li'): title = sel.xpath('a/text()').extract() link = sel.xpath('a/@href').extract() desc = sel.xpath('text()').extract() print title, link, desc

现在尝试再次爬取dmoz.org,您将看到爬取到的网站信息被成功输出:

scrapy crawl dmoz

使用item

 对象是自定义的python字典。 您可以使用标准的字典语法来获取到其每个字段的值。(字段即是我们之前用Field赋值的属性):

>>> item = DmozItem()>>> item['title'] = 'Example title' >>> item['title'] 'Example title'

一般来说,Spider将会将爬取到的数据以  对象返回。所以为了将爬取的数据返回,我们最终的代码将是:

import scrapyfrom tutorial.items import DmozItem class DmozSpider(scrapy.Spider): name = "dmoz" allowed_domains = ["dmoz.org"] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/" ] def parse(self, response): for sel in response.xpath('//ul/li'): item = DmozItem() item['title'] = sel.xpath('a/text()').extract() item['link'] = sel.xpath('a/@href').extract() item['desc'] = sel.xpath('text()').extract() yield item

注解

您可以在  项目中找到一个具有完整功能的spider。该项目可以通过 找到。

现在对dmoz.org进行爬取将会产生 DmozItem 对象:

[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>     {'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],      'link': [u'http://gnosis.cx/TPiP/'],      'title': [u'Text Processing in Python']}[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>     {'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],      'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],      'title': [u'XML Processing with Python']}

保存爬取到的数据

最简单存储爬取的数据的方式是使用 :

scrapy crawl dmoz -o items.json

该命令将采用  格式对爬取的数据进行序列化,生成 items.json 文件。

在类似本篇教程里这样小规模的项目中,这种存储方式已经足够。 如果需要对爬取到的item做更多更为复杂的操作,您可以编写  。 类似于我们在创建项目时对Item做的,用于您编写自己的 tutorial/pipelines.py 也被创建。 不过如果您仅仅想要保存item,您不需要实现任何的pipeline。

下一步

本篇教程仅介绍了Scrapy的基础,还有很多特性没有涉及。请查看  章节中的 部分,大致浏览大部分重要的特性。

接着,我们推荐您把玩一个例子(查看 ),而后继续阅读  。

转载于:https://www.cnblogs.com/dasn/articles/4849259.html

你可能感兴趣的文章